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Abstract
We report on current efforts to detect the thermal and dissipative contributions
to the Casimir force. For the thermal component, two experiments are in
progress at Dartmouth and at the Institute Laue Langevin in Grenoble. The
first experiment will seek to detect the Casimir force at the largest explorable
distance using a cylinder-plane geometry which offers various advantages
with respect to both sphere-plane and parallel-plane geometries. In the
second experiment, the Casimir force in the parallel-plane configuration is
measured with a dedicated torsional balance, up to 10 µm. Parallelism of
large surfaces, critical for this configuration, is maintained through the use
of inclinometer technology already implemented at Grenoble for the study
of gravitationally bound states of ultracold neutrons. For the dissipative
component of the Casimir force, we discuss detection techniques based upon the
use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although
quite challenging, this triad of experimental efforts, if successful, will give us a
better knowledge of the interplay between quantum and thermal fluctuations of
the electromagnetic field and of the nature of dissipation induced by the motion
of objects in a quantum vacuum.
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1. Introduction

The study of the quantum vacuum [1] is of great interest in physics due to recent astrophysical
observations supporting an accelerating universe [2–4]. In various models, the acceleration
is attributable to a cosmological term triggered by quantum vacuum effects [5]. In addition,
the development of models unifying gravity and the other interactions has led to predictions
of the existence of new Yukawa forces in the micrometre range with coupling of the same
order of magnitude as gravity [6]. These motivations are encouraging many theoretical and
experimental studies into the physics of the quantum vacuum and its interplay with cosmology
and elementary particle physics [7–10]. The Casimir force [11] is an important accessible
window in this context (see [12–20] for monographs and reviews) and, particularly in the
last decade, has been studied with an increasing level of accuracy in various geometries,
from parallel plates [21, 22] to sphere plane [23–32]. Detailed knowledge of the Casimir
force is important to master all the corrections in order to constrain, from the residuals of
the actual experiments, the presence of Yukawa forces in the micrometre range. In particular,
the interplay of Casimir forces with thermal photons due to a blackbody background and in the
presence of realistic cavities is not fully understood, and it seems likely that only experiments
will be able to discern among the models proposed so far. The contribution of thermal photons
grows with the size of the cavity in which the Casimir pressure is exerted; thus, one needs to
measure the Casimir force at large distances. Given the reduced sensitivity of atomic force
microscope experiments at large distances and the weak signal expected with a sphere-plane
geometry, the most promising configurations to look for Casimir forces at large distances are
the cylinder-plane and the parallel-plane geometries.

Thermal effects are not solely a result of finite temperature environment, since the
motion of objects in quantum vacuum in itself also gives rise to heating. In fact, it has
been predicted that non-uniformly accelerated objects should dissipate energy in the form of
photons, a phenomenon known as the dynamical Casimir effect [33–40]. When specialized
in a cavity configuration, this effect is also equivalent to parametric production of photons
through quantum vacuum. The predicted Casimir photon production is quite low for realistic
configurations, necessitating low-noise, high-sensitivity detection techniques such as hyperfine
or Rydberg atomic spectroscopy. In this paper, we discuss the current status of three ongoing
experimental projects aimed at measuring the thermal contribution to the Casimir force and
observing the predicted vacuum photons emitted from a non-uniformly accelerated resonant
cavity. In section 2, we discuss the predictions for the thermal contribution to the Casimir force
expected for both the cylinder-plane and the parallel-plane configurations. We then describe
some experimental issues for the corresponding experimental efforts ongoing at Dartmouth
and in Grenoble, focusing on potential hurdles for the projects. Finally, in section 3, we briefly
describe a proposal to detect the dynamical Casimir photons based upon atomic spectroscopy
and high-frequency mechanical resonators.

2. Thermal contribution to the Casimir force

The thermal contribution to the Casimir force has not yet been detected, in spite of its
importance as a background to new forces in the 1–10 µm range. This scenario is complicated
by the presence of models which yield different results when finite temperature and finite
conductivity are taken into account [41–56]. The basic theoretical formalism for the calculation
of Casimir forces between real metals at finite temperature is given by the Lifshitz theory
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[57, 58]. This theory provides an expression for the pressure Ppp (or, equivalently, the force
Fpp = SPpp) between two parallel plates of surface area S, separated by a gap d,

Fpp(d) = S

πβd3

∞′∑
m=0

∫ ∞

mγ (d)

dy y2

[
r−2

TM e−2y

1 − r−2
TM e−2y

+
r−2

TE e−2y

1 − r−2
TE e−2y

]
. (1)

Here β = 1/kBT is the inverse temperature, γ (d) = 2πd/βh̄c and the prime on the summation
sign indicates that the m = 0 term is counted with half weight. The reflection coefficients
rTE and rTM for the two independent polarizations TE and TM are computed at imaginary
frequencies ωm = iξm, where ξm = 2πm/βh̄ are the Matsubara frequencies.

The exact expressions for the reflectivity coefficients, which encompass the optical
response of the electrons in the metallic surfaces, are not known. Within the Lifshitz formalism,
they are expressed in terms of the dielectric permittivity ε(ω) of the metals

r−2
TM =

[
ε(iξm)pm + sm

ε(iξm)pm − sm

]2

, r−2
TE =

[
sm + pm

sm − pm

]2

, (2)

where pm = y/mγ and sm = √
ε(iξm) − 1 + p2

m. The dielectric permittivity along the
imaginary frequency axis can be computed using tabulated optical data for different metals. For
the range of temperatures to be probed in the experiments (a few degrees around T = 300 K),
permittivity data corresponding to Matsubara frequencies ζm = 2πm/βh̄ with m � 1 can be
extracted from the optical data. However, to determine the m = 0 contribution, it is necessary
to extrapolate the data to zero frequency. This extrapolation has been done by several groups
using different approaches, leading to contradicting predictions for the magnitude of the
force.

In figure 1 (top), we show the absolute value of the force between two parallel gold metallic
plates at T = 300 K as a function of the gap using two different theoretical approaches. The
first approach is based on the plasma model ε(iξ) = 1 + ω2

p

/
ξ 2, where ωp is the plasma

frequency. In this case, the TE m = 0 term contributes to the Casimir force. The second
approach is based on the Drude model ε(iξ) = 1 + ω2

p

/
(ξ(ξ + ν)), where ν is the relaxation

frequency. In this case, the TE m = 0 term does not contribute to the Casimir force. We
have numerically computed the integral in equation (1) using quadratures with a cut-off
ymax = 50 + mγ , and we have used a cut-off mmax for the m summation, corresponding to
a maximum Matsubara frequency ζmax = 1017 rad s−1. We have checked that the results
are robust against variations of these cut-offs. We also show in figure 1 (bottom) the force
between a cylinder (of radius a and length L) and a plane, assumed to be parallel, separated by
a gap d. This force has been evaluated using the results for the pressure in the parallel-plane
configuration, and the proximity force approximation (valid in the limit d � a) [59–61]:

Fcp = 2
∫ π/2

0
Ppp(d + a(1 − cos ϕ))La dϕ. (3)

The angle ϕ parametrizes the location of the infinitesimal surfaces on the cylinder. The
leading contribution to the integral comes from angles close to ϕ = 0. In order to speed up
the numerical computation of the integral, we have used as an upper limit ϕ = π/20, and
we have checked that the results, in the limit d � a, are robust when we varied this upper
limit.

In the proximity force approximation, the surfaces of the plane and the cylinder are divided
into infinitesimal parts to integrate the parallel plates result. There is an ambiguity in the
choice of the areas of these infinitesimal parts. Different choices give distinct approximations
for the force. In equation (3), we have chosen the area of a small portion of the cylinder
dAc = La dϕ. One could also use the area of a small portion of the plane dAp = La cos ϕ dϕ,
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Figure 1. Absolute Casimir force as a function of distance at T = 300 K for Au–Au metallic
surfaces in (A) plane–plane configuration and (B) cylinder-plane configuration. The force is
computed using two distinct theoretical approaches: the plasma model (for which the TE m = 0
mode contributes to the force), and the Drude model (for which the TE m = 0 mode does
not contribute). The plasma frequency of Au is ωp = 9.0 eV, and its relaxation frequency is
ν = 35 meV. For (A), we use 10 cm × 12 cm plates. For (B), we use L = 2 cm for the
length of the cylinder, and a = 1 cm for its radius. In the range of distances plotted in these
figures, the Casimir force between Cu–Cu and Al–Al surfaces is the same as for Au–Au surfaces
within 0.1 %.

or a combination of the two, like the geometric mean dAgm = (dAp dAc)
1/2. The accuracy of

the proximity force approximation has been estimated by computing the force Fcp using all
the areas mentioned above. The results differ by less than 1.2% for both plasma and Drude
models at d < 10 µm.

Analytical expressions for the force, both for parallel plates and cylinder-plate geometries,
can be obtained for some limits. We consider here the case of surfaces without roughness
(corrections due to roughness are important for small distances d < 1 µm at T = 300 K).
For perfect conductors at zero temperature, one recovers the original Casimir formula for
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the parallel plates case, and the cylinder-plane force can be obtained in the proximity force
approximation (d � a) [62]:

F (T =0)
pp = π2h̄c

240

S

d4
, F (T =0)

cp = π3h̄cLa1/2

384
√

2d7/2
. (4)

The scaling of the force with distance for the cylinder-plane case (�d−7/2) is intermediate
between the parallel-plane (�d−4) and the sphere-plane (�d−3) cases. This is an advantage
with respect to the parallel-plane case because the latter is quickly going to zero with the
distance. For reasonable values of the relevant parameters, the magnitude of the Casimir
force in the cylinder-plane case is also intermediate between the cases of the sphere plane,
as investigated with atomic force microscopy, and the case of parallel planes7. For finite
temperature and real conductors, one can obtain closed expressions for the force using, e.g.,
the plasma model. At temperatures T � Teff = h̄c/2kBd, and to first order in δ/d (where
δ = λp/2π , with λp the plasma wavelength) one obtains

Fpp

F
(T =0)
pp

≈ 1 +
1

3

(
T

Teff

)4

− 16δ

3d

[
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(
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]
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(
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− δ

d

[
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3
− 48ξ(3)

π3

(
T

Teff

)3
]

,

where ξ(z) is the Riemann zeta function. Finally, in the high-temperature limit T � Teff the
forces are dominated by the thermal contribution

F thermal
pp ≈ ξ(3)kBT

4π

S

d3
; F thermal

cp ≈ 3ξ(3)kBT

16
√

2

La1/2

d5/2
, (5)

which represent the radiation pressure due to the thermal blackbody photons at finite
temperature. This force could be used, by intentionally increasing the temperature by known
amounts, to obtain physical calibrations and estimates of the sensitivity for any apparatus
aimed at high-precision measurements of the Casimir force.

2.1. Cylinder-plane configuration: experimental issues

The apparatus we are developing to measure the Casimir force in a cylinder-plane configuration
has been described in [63] as are parallelization and calibration techniques. Here we focus on
possible complications in measuring the Casimir force due to the finite thermal stabilization
of the apparatus. This is reflected first in the stability of the parallelism. Long-term thermal
drifts on the apparatus affect the parallelism and therefore limit the total measurement time.
As discussed in [63], the parallelism can be assessed by intentionally rotating the cylinder
around its midpoint. The parallel configuration is that which minimizes the frequency shift
due to an external spatially dependent force, such as the electrostatic force, and this is shown
in figure 2 for a relatively long measurement time. The curves are fitted as pieces of parabolas
but both the curvature and the centre of the parabolas are different, with the shallower curve
corresponding to a larger distance between the cylinder and the plane. This can be interpreted
as due to sudden drifts in the separation distance, and will be mitigated in future versions of
the apparatus with improved thermal stabilization and the use of materials such as Invar alloys
with minimal thermal expansion coefficients.

7 The unique case of sphere-plane experiment using a lens as the spherical surface gives a large signal [24]; however,
the precision in the measurement of the radius of curvature is an issue [64].
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Figure 2. Long-term behaviour of the resonator frequency. Depicted is the frequency of the
resonator with an applied bias voltage of V = 100 V versus the difference between the voltages
applied to the piezoelectric actuators, starting from the highest voltage VL − VR = +100 V
and scaling down in time (from right to left) to minimize hysteresis effects in the piezoelectric
actuators. The free resonator frequency (without bias voltage) is ν0 = (526.40 ± 0.02) Hz.
Each measurement carries 100 averages (each average lasting 32 s), and after the first seven
measurements we experienced an abrupt change in the distance (manifested both by a swallower
curvature and a higher frequency) as well as in the angle formed by the cylinder axis and the
resonator surface (manifested by a displacement in the voltage for which there is the minimum
frequency shift). A second abrupt change has taken place after another six measurements, in the
same direction for the drift of both the gap distance and angle. The continuous curves are the
distinct parabolic fits to each set of data. The overall duration of the run was �18 h.

The thermal drifts are also an indirect reason for limiting the number of averages in a
long-time measurement of the Casimir force. A measurement of the Casimir force around
3 µm capable of disentangling between the two different models for the temperature
corrections, as discussed above and in [63], requires high force sensitivity. One possible
detection scheme, which has been used to calibrate the apparatus, is based on the measurement
of frequency shifts of the resonator induced by a spatially dependent force [65, 66]. In the
(ideal) case of a perfect stability (no drifts in frequency or other parameters), an ideal theoretical
understanding of the response and an infinite number of measurements, one could achieve
an exact determination of the peak frequency for any value of the mechanical quality factor.
Obviously, none of these conditions is fulfilled in an actual experiment. The parameters of
the resonator may drift in time, there may be an incomplete understanding of the background
which produces residuals in the fit, as well as statistical fluctuations due to the finite number
of averages. Then this gives rise to a finite precision in determining any parameter modelling
the resonator response, including the peak frequency. We have studied the dependence of the
precision in the determination of the peak frequency versus the number of averages of the
FFT transform of the photodiode signal resulting from a fibre optic interferometer [67]. As
shown in figure 3 (left), the error in the determination of the peak frequency is fitted by the
standard 1/

√
N dependence. Due to the presence of thermal drifts, one cannot expect ideal

behaviour even in the limit of infinite averaging. It is therefore important to study how to
optimize the precision in the determination of the peak frequency for a fixed measurement
time. Once the latter is fixed we can choose to measure on a large window (at the price of worse
frequency resolution on the FFT analysis) or vice versa. In figure 3 (right), we plot the error
in the determination of the peak frequency versus the selected window of the FFT analyser
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Figure 3. Optimization of the accuracy for the peak frequency measurement. On the left panel,
we plot the peak frequency uncertainty evaluated from the fitting of the resonance curve of the
mechanical oscillator versus the number of averages taken with the FFT spectrum analyser at
constant sampling time (32 s, corresponding to a frequency span of 12.5 Hz). The data are fitted
with a 1/

√
N dependence (dashed line), as well as with a constant offset term �ν = a + b/

√
N

(continuous line). The second fit gives us an offset term a = (5.9 ± 2.4) mHz which is related
to the systematics in data fitting and the stability of the fit parameters and the apparatus. On
the right panel, we report the error on the resonance curve fitting versus the number of averages,
keeping constant the total measurement time in each of the four data sets, corresponding to 640 s
and its three next multiples. Each average corresponds to different FFT windows (spanning from
200 Hz in the case of 2 s sampling time to 3.125 Hz for 128 s sampling time) and then different
FFT frequency resolutions. Consistent with the plot on the left side, the peak frequency error on
the right plot decreases from one data set to the other corresponding to increasing measurement
time. The four curves also show a common trend with a minimization of the error for a number of
averages between 8 and 16, corresponding to a frequency window δν between 25 and 50 Hz, i.e.
about ten times the resonator linewidth of �3 Hz. Error bars represent the statistical uncertainty
of the fitting procedure.

(or, equivalently, versus the sampling time for each measurement). It is evident that the
error on the peak frequency is optimized for an intermediate value of the windowing. Larger
windowing yields poor frequency resolution inherent to the FFT, partially compensated by
the decreased statistical uncertainty resulting from the larger number of averages, while small
windowing allows for better frequency resolution at the cost of large statistical fluctuations.
Our tests indicate that the error on the peak frequency is minimized by using a window about
ten times the intrinsic bandwidth of the mechanical resonator (on the order of 2–3 Hz in our
case). This also shows that, unless particular care is taken to minimize thermal drifts, the
use of large mechanical quality factors for the resonators does not necessarily improve the
sensitivity, as the longer measurement times required for the optimal narrower windowing will
make the resonator more prone to thermal drifts: in the presence of finite thermal stability
there will be, for the frequency-shift measurement technique, an optimal quality factor for the
resonator.

2.2. Parallel-plane configuration: experimental issues

The parallel plate configuration, as discussed in [68], still has a high priority for performing
Casimir force measurements due to the unique features of this geometry. In particular, it may
provide the strongest limits on non-Newtonian gravity in the 1–10 µm range due to the largest
attainable signal and the absence of gravitational force gradients apart from boundary effects
[69–71]. Due to the importance of investigating non-Newtonian forces in recent unification
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Figure 4. Schematic design of the torsional balance under development at ILL, Grenoble. The
parallelism between the plates of the balance and the outer plates is obtained through a set of
high-precision piezoelectric actuators. The symmetry of the scheme allows for many cross-checks
of systematic effects, and for physical calibrations and assessments of the ultimate sensitivity based
on both electrostatic and gravitational forces, the latter force being testable through fine control of
the position of nearby static masses.

frameworks, this research programme is currently pursued by our collaboration. In order to
measure the thermal contribution, the steep scaling of the parallel plane Casimir force with
respect to distance requires the use of large, macroscopic surfaces, which in turn leads to the
use of a high-sensitivity torsional balance [72]. In our project, two pairs of plates are installed
on opposite arms of the moving and static parts of the balance, respectively (see figure 4).

These plates have a surface area of 120 cm2 for the measurement at the largest gaps, on the
order of 10 µm. For smaller distances (�1 µm), the effective area can be reduced to 15 cm2,
which minimizes the chance of having dust trapped in the gap. The target torque sensitivity is in
the 1–100 µN rad−1 range, obtainable with a quartz wire of diameter 50–150 µm. This allows
for a minimum detectable force of the order 1 pN. Three high-precision piezoelectric actuators
and their feedback controllers maintain a constant distance between the two plates throughout
the duration of the measurement, with an accuracy of 0.2 µm. Capacitors symmetrically
located on the opposite sides of the active surfaces for the measurement of the Casimir force
allow for further control of the gap distance. The distance between the capacitor plates is large
enough (100 µm) to avoid backaction effects on the torsional balance, yet provide adequate
sensitivity.

Parallelization procedures will be based on expertise already acquired in Grenoble through
an experiment in which discretization of the energy levels of ultracold neutrons in the earth’s
gravitational field has been observed [73]. While in these experiments parallelism between
the neutron reflecting surface and the absorber has been kept to about 10−6 rad, the expected
parallelism with the use of the piezoelectric actuators and auxiliary capacitors is around
10−7 rad. The surface roughness should be around 1–2 nm. In a second stage of the experiment,
metallic layers with the thickness of �1 µm will be used when searching for hypothetical
Yukawa forces with gravitational coupling, and this may lead to a degradation of the surface
quality. The availability of in situ diagnostic techniques in surface science laboratories already
present in Grenoble will provide complete characterization of the surfaces. Another potential
hurdle along the way is the tilting of the mirrors in the arms of the torsional balance. This can
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Figure 5. Experimental set-up for the measurement of the Casimir force in a parallel-plane
configuration. On the left, the plate holders are connected to the external frame through three
precision piezoelectric positioners each plate. On the right is an overall view of the vacuum
chamber with the fibre holder on the top.

be addressed by reducing the lever of the torsional balance, properly designing the position
of its pivot point, and segmenting the electrodes in such a way that small tilts do not result
in changes of the effective surface. The latter solution also implies a control of the border
effects, which have to be carefully estimated for instance through the worldline numerics
approach pioneered in [74]. The experiment is currently in preparation (see figure 5) and the
first calibrations of the apparatus are planned in early 2006. Once again, we want to stress
that various physical signals can be used to calibrate this apparatus, including the possibility
of measuring the gravitational force through a Cavendish-like experiment. This allows for a
simple expression of the apparatus sensitivity in terms of the maximum distance at which a
known gravitational source may be detected—a parametrization of the sensitivity particularly
natural when discussing the limits to Yukawa forces in the micrometre range.

3. Dissipative contribution to the Casimir force

The emission of photons due to the dissipative nature of motion in quantum vacuum has been
predicted using various analytical [33, 34, 37–40] and numerical [75] methods. Dissipation
is expected when a material body undergoes a non-uniform acceleration. The phenomenon
is often discussed in the context of a resonant cavity where the amplification of vacuum field
energy is enhanced due to a periodic motion of a boundary and the build-up of photons in
the cavity. From this point of view, the phenomenon, also called the dynamical Casimir
effect, consists of the amplification of vacuum field energy as the periodic modulation of the
cavity boundaries excites a particular mode of vacuum field, with the transformed state being
squeezed. The number of photons in the mode (if uncoupled to any other mode) increases
exponentially as Ncas = sinh2(λεt), where ε = δL/L is the amplitude of the modulation and
λ depends on the geometry of the cavity and the particular resonant mode [76]. In practice,
the exponential growth is constrained due to the finite optical quality factor Q, with the
growth saturating at times τsat � Q/ω. Typically, for cylindrical cavities with rectangular or
circular sections, λ/ω ∼ O(1). Therefore, the number of produced photons is approximated
as Ncas ∼ sinh2(Qε). For ε � 10−8 (about a few nm displacement in the GHz range) and
Q � 108, a typical number of photons expected is on the order of unity. The result is very
sensitive to the value of Qε, the photon number being �103 for Qε ∼ 4. These estimations
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Figure 6. Schematic of the atomic detection technique. The two-level atoms interact with the
photons generated through the mechanical modulation of the cavity. In the detection stage, either
fluorescence or field ionization techniques can be adapted to detect the change in the atomic
population.

illustrate the difficulty of the observation of this phenomenon. The number of created photons
could be much larger if, instead of considering a cavity with moving boundaries, one considers
a cavity with time-dependent reflectivity. The effective length of the cavity could be changed
by irradiating with fast laser pulses, a thin semiconductor film contained in it [77–79]. It has
been recently shown, using a simplified model [80], that in this case one could reasonably
get Qε � 1, but the heating due to the laser pulses and the generation of excitations in the
semiconductor [81] are an open issue for the current implementation of this scheme as in the
MIR experiment [82–84]. Recently, a generation and detection scheme has been proposed
based on the two emerging technologies of high-frequency resonators and the ultracold atoms
[68]. The basic idea is to prepare two-level atoms into a particular excited state and to
induce the stimulated transition in the presence of the amplified vacuum field as schematically
depicted in figure 6.

The vacuum amplification takes place inside a resonant cavity where an array of
mechanical resonators is coherently oscillating. These mechanical resonators of high
frequency are available (up to 3.1 GHz) due to the recent development of the film bulk acoustic
resonator (FBAR) devices. The integral part of the FBAR devices is a thin piezoelectric
film made of aluminium nitride (AIN) for which the mechanical frequency can be changed
with a varying thickness [85, 86]. Depending on the nature of two-level atoms, one could
detect the progressive change in atomic population either by fluorescence (photon detection)
or by field ionization procedure (electron detection). The original scheme relies on the
hyperfine splitting of 6Li whose transition frequency in the ground state is 228 MHz, which
is the lowest among alkali atoms, thereby allowing a reasonable matching with the working
frequency of available high-frequency mechanical nanoresonators. Apart from the difficulty of
fabricating an ensemble of mechanical resonators coherently driven at a well-defined frequency
(456 MHz), the use of hyperfine splitting seems disadvantageous due to an extremely low
stimulated emission rate. For a two-level atom, the stimulated emission rate is directly
proportional to the spontaneous rate given by

A = ω3D2
ij

πεoh̄c3
, (6)

where D2
ij is the matrix element for the dipole transition between ith and jth states. For the

two hyperfine ground states of Li, the magnetic dipole interaction dominates the transition,
which gives rise to an additional factor of v2/c2, lowering the emission rate by 1020 compared
to the usual electric dipole interaction. Furthermore, the estimated power of Casimir photons
for Qε ∼ 1 is Ncash̄ω/τsat � 10−25 W, too small to induce the hyperfine transition.
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Figure 7. Atomic beam line for studies of the induced transitions in hyperfine levels of 6Li
by means of controllable electromagnetic fields (top picture). 6Li vapour cell (bottom left) and
corresponding saturation absorption signal with the hyperfine states spaced by 228 MHz (bottom
right).

In order to maximize the atomic emission rate, one could consider an electric dipole
transition with a larger matrix element. The most natural choice satisfying these criteria is
the use of circular Rydberg atoms [87, 88] having large electric dipole moment (�n4a2) and
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relatively long lifetime (�n5) [89, 90], already employed in the studies of cavity quantum
electrodynamics [91, 92] and quantum information processing [93]. The transition frequency
can in principle be chosen at will by varying the principal quantum number up to n = 150
[94, 95], which provides a great tunability with a mechanical resonator.

Although the use of Rydberg atoms greatly increases the stimulated emission rate, the
number of photons generated inside the cavity is still too small to be measured through
an appreciable change in atomic population. This issue can be overcome by exploiting an
additional amplification procedure through super-radiance. The overall scheme is identical
to the super-radiant maser system in the millimetre-wave domain considered in [96, 97]. In
super-radiance, a single atom undergoing a transition triggers a subsequent emission on the
neighbouring atoms resulting in a large pulse whose lifetime is inversely proportional to the
number of atoms present in the coherent volume. As long as the number of Casimir photons
produced inside a resonant cavity exceeds the number of spontaneously emitted photons during
the atomic travel time across the cavity, it is possible to measure the triggering effect of the
Casimir photons on the super-radiant pulse through control of delay time, polarization and
phase [97]. Because the estimated number of Casimir photons is very small, however, the
triggering effect may be dominated by the vacuum fluctuations or the presence of thermal
photons as well. For this super-radiance scheme to be effective, the Casimir photons must be
the dominant triggering source. So far, we have built at Dartmouth a 6Li atomic beam source
to study optical pumping and detection of hyperfine states populations (see figure 7), which
can be easily extended to rubidium atoms, the most natural candidate for the preparation of
Rydberg states in our scheme.

4. Conclusions

We have described ongoing experimental efforts in Casimir physics, with the goal of studying
the interplay between pure quantum fluctuations and thermal effects, either in the form
of thermal photons—always present in any finite temperature environment, or photons
originating from the dissipative nature of non-uniformly accelerated motion of an object in
quantum vacuum. The combination of strong signals at large distances and relatively simple
parallelization makes the investigation of the Casimir force in a cylinder-plane geometry quite
attractive, allowing for discrimination between theoretical approaches. Recent technological
advances make possible the achievement of almost ideal parallelization in the parallel-plane
geometry, providing strong constraints on hypothetical Yukawa forces. Use of hyperfine or
super-radiant Rydberg atoms for the detection of the dynamical Casimir effect will require
a delicate balance in the parameter space, and yet it promises exciting insights into the
dissipative nature of quantum vacuum. These combined efforts should lead towards a more
comprehensive understanding of fluctuation and dissipation of quantum vacuum.
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